Slide background
Mersin Üniversitesi

Ders Bilgileri

GEOLOGICAL DATA MANAGEMENT
Kodu Dönemi Teori Uygulama Ulusal Kredisi AKTS Kredisi
Saat / Hafta
JM481 Fall 2 0 2 3
Ön Koşulu Olan Ders( ler ) Non
Dili en
Türü Elective
Seviyesi Bachelor's
Öğretim Elemanı( ları ) Asst. Prof. Dr. Hidayet TAĞA
Öğretim Sistemi Face to Face
Önerilen Hususlar Non
Staj Durumu None
Amacı Techniques and strategy of data analysis in geology and geological engineering: basic statistics review, analysis of data sequences, mapping, sampling and sample representativity, univariate and multivariate statistics, geostatistics, and geographic informations systems (GIS). Practical experience with geological applications via supplied software and data sets from case histories.
İçeriği Construction data base, method of data analysis, statistical analysis, performance of statistical analysis result, sampling and sample representation, using computer software programme.

Dersin Öğrenim Çıktıları

# Öğrenim Çıktıları
1 LO-1. Learn to construct data base.
2 LO-2. Learn method of data analysis.
3 LO-3. Learn statistical analysis
4 LO-4. Learn to interpretation about performance of statistical analysis result.
5 LO-5. Learn to construct maps using data base.
6 LO-6. Learn represantative sampling for case.
7 LO-7. Learn to determine analyse method according to existing data base.
8 LO-8. Learn to use computer software programme for analyse data base.

Haftalık Ayrıntılı Ders İçeriği

# Konular Öğretim Yöntem ve Teknikleri
1 Methods of construction data base
2 Crisp and fuzzy clusters Teaching, discussion, guided practice
3 Methods of data analysis for crisp clusters Teaching, discussion, guided practice
4 Basic statistical analysis Teaching, discussion, guided practice
5 Simple regression analysis Teaching, discussion, guided practice
6 Multiple regression analysis Teaching, discussion, guided practice
7 Probability analysis Teaching, discussion, guided practice
8 Analysis of sequences of data Teaching, discussion, guided practice
9 MID-TERM EXAM
10 Sampling and sample represantation Teaching, discussion, guided practice
11 T-distribution, F- distribution, x2- distribution, VAF, RMSE Teaching, discussion, guided practice
12 Methods of analyse for geometric and linguistic datas Teaching, discussion, guided practice
13 Fuzzy logic, fractal geometry Teaching, discussion, guided practice
14 Methods used for data base constructig maps. Teaching, discussion, guided practice
15 Mid-term project using computer software programmes. Teaching, discussion, guided practice
16 Final Exam

Resources

# Malzeme / Kaynak Adı Kaynak Hakkında Bilgi Referans / Önerilen Kaynak
1 Demuth, H., Beale, M., Hagan, M., 2005. MATLAB Version 7.3.0.267; Neural Network Toolbox for Use with Matlab. The Mathworks. 348p. Text Book/Material Book
2 Demuth, H., Beale, M., Hagan, M., 2005. MATLAB Version 7.3.0.267; Neural Network Toolbox for Use with Matlab. The Mathworks. 348p. Text Book/Material Book

Ölçme ve Değerlendirme Sistemi

# Ağırlık Çalışma Türü Çalışma Adı
1 0.4 1 1. Mid-Term Exam
2 0.6 5 Final Exam

Dersin Öğrenim Çıktıları ve Program Yeterlilikleri ile İlişkileri

# Öğrenim Çıktıları Program Çıktıları Ölçme ve Değerlendirme
1 LO-1. Learn to construct data base. 1͵2͵4͵7͵8 1͵2
2 LO-2. Learn method of data analysis. 1͵2͵4͵8 1͵2
3 LO-3. Learn statistical analysis 1͵2͵4͵7͵8 1͵2
4 LO-4. Learn to interpretation about performance of statistical analysis result. 1͵2͵4͵7͵8 1͵2
5 LO-5. Learn to construct maps using data base. 1͵2͵4͵7͵8 1͵2
6 LO-6. Learn represantative sampling for case. 1͵2͵4͵7͵8 1͵2
7 LO-7. Learn to determine analyse method according to existing data base. 1͵2͵4͵7͵8 1͵2
8 LO-8. Learn to use computer software programme for analyse data base. 1͵2͵4͵7͵8

Not: Ölçme ve Değerlendirme sütununda belirtilen sayılar, bir üstte bulunan Ölçme ve Değerlerndirme Sistemi başlıklı tabloda belirtilen çalışmaları işaret etmektedir.

İş Yükü Detayları

# Etkinlik Adet Süre (Saat) İş Yükü
0 Course Duration 14 2 28
1 Course Duration Except Class (Preliminary Study, Enhancement) 14 2 28
2 Presentation and Seminar Preparation 0 0 0
3 Web Research, Library and Archival Work 0 0 0
4 Document/Information Listing 0 0 0
5 Workshop 0 0 0
6 Preparation for Midterm Exam 1 3 3
7 Midterm Exam 1 1 1
8 Quiz 0 0 0
9 Homework 3 1 3
10 Midterm Project 0 0 0
11 Midterm Exercise 0 0 0
12 Final Project 1 6 6
13 Final Exercise 0 0 0
14 Preparation for Final Exam 1 5 5
15 Final Exam 1 1 1
75