Slide background
Mersin Üniversitesi

Ders Bilgileri

DATA STRUCTURES AND ALGORITHMS
Kodu Dönemi Teori Uygulama Ulusal Kredisi AKTS Kredisi
Saat / Hafta
İBY209 Fall 3 0 3 3
Ön Koşulu Olan Ders( ler ) None
Dili en
Türü Required
Seviyesi Bachelor's
Öğretim Elemanı( ları ) Dr.Mehmet ZİLE
Öğretim Sistemi Face to Face
Önerilen Hususlar None
Staj Durumu None
Amacı Teaching real life data representations via data structures on computer memory, and the applications of algorithms for solving real-world problems
İçeriği Lists and arrays, search and sorting algorithms, recurive algorithms, data trees and networks, network algorihms and dynamic algorithms

Dersin Öğrenim Çıktıları

# Öğrenim Çıktıları
1 Uses groups of variables representing data collection
2 Differentiates sequential and ordered data structures
3 Designs and applies search and sorting algorithms
4 Uses basic principles of advanced data structures like data trees and networks

Haftalık Ayrıntılı Ders İçeriği

# Konular Öğretim Yöntem ve Teknikleri
1 Concepts of variables and pointers Lecture, discussion
2 Sequential data structures; arrays Lecture, discussion
3 Linked data structures; lists Lecture, discussion
4 Member access in arrays and lists and differences Lecture, discussion
5 Search and sorting algorithms on lists and arrays Lecture, discussion
6 Recursive algorithms and algorithm analysis Lecture, discussion
7 Examples and applications on algorithms Lecture, discussion
8 Midterm Written exam
9 Ordinary and binary data trees Lecture, discussion
10 Binary search and its applications Lecture, discussion
11 Types of network structures Lecture, discussion
12 Network structures and spanning-trees Lecture, discussion
13 Spanning-tree algorithms Lecture, discussion
14 Examples and applications of network structures Lecture, discussion
15 Dynamic algorithms Lecture, discussion
16 Final Exam Written exam

Resources

# Malzeme / Kaynak Adı Kaynak Hakkında Bilgi Referans / Önerilen Kaynak
1 Introduction to Algorithms, Leiserson and Rivest, MIT Press Book None

Ölçme ve Değerlendirme Sistemi

# Ağırlık Çalışma Türü Çalışma Adı
1 0.4 1 1. Mid-Term Exam
2 0.6 5 Final Exam

Dersin Öğrenim Çıktıları ve Program Yeterlilikleri ile İlişkileri

# Öğrenim Çıktıları Program Çıktıları Ölçme ve Değerlendirme
1 Uses groups of variables representing data collection 1͵7 1͵2
2 Differentiates sequential and ordered data structures 1͵7 1͵2
3 Designs and applies search and sorting algorithms 1͵7 1͵2
4 Uses basic principles of advanced data structures like data trees and networks 1͵7 1͵2

Not: Ölçme ve Değerlendirme sütununda belirtilen sayılar, bir üstte bulunan Ölçme ve Değerlerndirme Sistemi başlıklı tabloda belirtilen çalışmaları işaret etmektedir.

İş Yükü Detayları

# Etkinlik Adet Süre (Saat) İş Yükü
0 Course Duration 14 3 42
1 Course Duration Except Class (Preliminary Study, Enhancement) 14 3 42
2 Presentation and Seminar Preparation 0 0 0
3 Web Research, Library and Archival Work 0 0 0
4 Document/Information Listing 0 0 0
5 Workshop 0 0 0
6 Preparation for Midterm Exam 1 2 2
7 Midterm Exam 1 1 1
8 Quiz 0 0 0
9 Homework 0 0 0
10 Midterm Project 0 0 0
11 Midterm Exercise 0 0 0
12 Final Project 1 0 0
13 Final Exercise 0 0 0
14 Preparation for Final Exam 1 2 2
15 Final Exam 1 1 1
90