Slide background
Mersin Üniversitesi

Ders Bilgileri

MATHEMATICS II
Kodu Dönemi Teori Uygulama Ulusal Kredisi AKTS Kredisi
Saat / Hafta
İBY106 Spring 2 2 3 3
Ön Koşulu Olan Ders( ler ) None
Dili en
Türü Required
Seviyesi Bachelor's
Öğretim Elemanı( ları ) Öğr. Gör. Vedia Bennu GİLAN
Öğretim Sistemi Face to Face
Önerilen Hususlar None
Staj Durumu None
Amacı To teach fundamental concepts of mathematical analysis and limit,continuity, derivative and applications of derivative in single-valued functions.
İçeriği Preliminaries, functions, limits and continuity, derivatives, applications of derivatives, integral and its applications.

Dersin Öğrenim Çıktıları

# Öğrenim Çıktıları
1 Recognizes the function and some special functions
2 Explains how to set limit at one point of functions.
3 Recognizes to properties of continuous functions.
4 Defines the geometric and physical meaning of the derivative
5 Compares the geometric and physical meaning of the derivative
6 Iinterprets the theorems related to derivatives.
7 Calculates indefinite limits.
8 Compares sets (cardinality), functions (injection, surjection, bijection, inverse, preimage),demonstrates basic abstract structures.

Haftalık Ayrıntılı Ders İçeriği

# Konular Öğretim Yöntem ve Teknikleri
1 Function concept, some special functions Examples, exercises and solutions
2 Limit concept, right and left-sided limits Examples, exercises and solutions
3 Limits of trigonometric functions Examples, exercises and solutions
4 Continuity of functions Sample questions
5 Properties of continuous functions Examples, exercises and solutions
6 The concept of derivative, rules of differentiation Examples, exercises and solutions
7 Derivatives of exponential and logarithm function Examples, exercises and solutions
8 Term examination Written examination
9 Higher order derivatives Examples, exercises and solutions
10 Derivatives of trigonometric functions Examples, exercises and solutions
11 Implicit differentiation, L'Hospital rule Examples, exercises and solutions
12 Integral, variable replacement method Examples, exercises and solutions
13 Partial integration method Sample questions
14 Exponential, logarithmic, trigonometric functions, integral Examples, exercises and solutions
15 Review Exercises and solutions
16 Final Exam Written examination

Resources

# Malzeme / Kaynak Adı Kaynak Hakkında Bilgi Referans / Önerilen Kaynak
1 Prof.Dr Mustafa BALCI Balcı Yayınları, Çözümlü Matematik Problemleri 1
2 Prof.Dr Mustafa BALCI Balcı Yayınları, Çözümlü Matematik Problemleri 2

Ölçme ve Değerlendirme Sistemi

# Ağırlık Çalışma Türü Çalışma Adı
1 0.4 1 1. Mid-Term Exam
2 0.6 5 Final Exam

Dersin Öğrenim Çıktıları ve Program Yeterlilikleri ile İlişkileri

# Öğrenim Çıktıları Program Çıktıları Ölçme ve Değerlendirme
1 Recognizes the function and some special functions 4͵7͵8 1͵2
2 Explains how to set limit at one point of functions. 2͵4͵7 1͵2
3 Recognizes to properties of continuous functions. 2͵4͵8 1͵2
4 Defines the geometric and physical meaning of the derivative 2͵7 1͵2
5 Compares the geometric and physical meaning of the derivative 2͵7͵8 1͵2
6 Iinterprets the theorems related to derivatives. 2͵4 1͵2
7 Calculates indefinite limits. 4͵7 1͵2
8 Compares sets (cardinality), functions (injection, surjection, bijection, inverse, preimage),demonstrates basic abstract structures. 2͵4͵7͵8 1͵2

Not: Ölçme ve Değerlendirme sütununda belirtilen sayılar, bir üstte bulunan Ölçme ve Değerlerndirme Sistemi başlıklı tabloda belirtilen çalışmaları işaret etmektedir.

İş Yükü Detayları

# Etkinlik Adet Süre (Saat) İş Yükü
13 Final Exercise 0 0 0
0 Course Duration 14 4 56
1 Course Duration Except Class (Preliminary Study, Enhancement) 14 1 14
2 Presentation and Seminar Preparation 0 0 0
3 Web Research, Library and Archival Work 0 0 0
4 Document/Information Listing 0 0 0
5 Workshop 0 0 0
6 Preparation for Midterm Exam 1 2 2
7 Midterm Exam 1 1 1
8 Quiz 0 0 0
9 Homework 0 0 0
10 Midterm Project 0 0 0
11 Midterm Exercise 0 0 0
12 Final Project 1 0 0
14 Preparation for Final Exam 1 1 1
15 Final Exam 1 1 1
75