Slide background
Mersin Üniversitesi

Ders Bilgileri

DATA MINING
Kodu Dönemi Teori Uygulama Ulusal Kredisi AKTS Kredisi
Saat / Hafta
İBY310 Spring 3 0 3
Ön Koşulu Olan Ders( ler )
Dili en
Türü Required
Seviyesi Bachelor's
Öğretim Elemanı( ları ) Okt.Jale BEKTAŞ
Öğretim Sistemi Face to Face
Önerilen Hususlar Yok
Staj Durumu None
Amacı The aim of this course, to get applicable informations that are not known before from wide databases and supply these informations proper to the usage goal with different variations of analyse methods.
İçeriği Description of data mining. Overview to application areas, techniques and methods of discipline. data mining steps: Define the aim, create data cluster proper to aim(data selection), data cleaning and preprocessing, data compression and data transformation, choose data Mining algorithm, method assessment and representation, interpretation of information. Review data mining algorithms: association rules, desicion trees, classification, regression, relationship building, memory based methods, k-neighbour algorithm, bayesian classification, clustering methods.

Dersin Öğrenim Çıktıları

# Öğrenim Çıktıları
1 Describe the definition and aim of data mining.
2 Identify overview to application areas, techniques and methods of discipline.
3 Identify data preprocessing steps for data warehouse concept.
4 Plan proper sollution to the problems and define data mining algorithms.
5 Apply association rules.
6 Analyse desicion trees and classification techniques.
7 Distinguish clustering methods.
8 Plan a sample warehouse with a real world data and analyse this data with all data mining algorithms.

Haftalık Ayrıntılı Ders İçeriği

# Konular Öğretim Yöntem ve Teknikleri
1 Description of data mining Lectures, discussion
2 Overview to application areas, techniques and methods of discipline. data mining steps, OLAP Lectures, discussion
3 Data preperation process and techniques for data mining Lectures, discussion
4 Data preperation process and techniques for data mining Lectures, discussion
5 Data preperation process and techniques for data mining Lectures, discussion
6 Mining algorithm, method, association rules(Appriori algorithm) Lectures, discussion
7 Mining algorithm, method, association rules(FP Growth algorithm) Lectures, discussion
8 Mid-term examination
9 Mining algorithm, method, classification and prediction Lectures, discussion
10 Mining algorithm, method, classification and prediction(Bayesian classification) Lectures, discussion
11 Application examples Application
12 Data mining cluster analysis and data types Application
13 Data mining clustering methods (k-neighbor algorithm) Application
14 Data mining clustering methods(hierarchical methods, density based methods) Application
15 Homework assessment Application
16 Final Exam

Resources

# Malzeme / Kaynak Adı Kaynak Hakkında Bilgi Referans / Önerilen Kaynak
1 Veri Madenciliği Mersin Üniversitesi, Ders Notu
2 G. Silahtaroğlu, Veri Madenciliği, Papatya Yayınevi, İstanbul, 2012
3 Dr.Yalçın Özkan, Veri Madenciliği Yöntemleri, Papatya Yayınevi,İstanbul, 2012
4 J.Han, M.Kamber, Data.Mining.Concepts.and.Techniques.2nd.Ed., America, 2010

Ölçme ve Değerlendirme Sistemi

# Ağırlık Çalışma Türü Çalışma Adı
1 0.4 1 1. Mid-Term Exam
2 0.2 9 1. Mid-Term Project
3 0.4 5 Final Exam

Dersin Öğrenim Çıktıları ve Program Yeterlilikleri ile İlişkileri

# Öğrenim Çıktıları Program Çıktıları Ölçme ve Değerlendirme
1 Describe the definition and aim of data mining. 7 1
2 Identify overview to application areas, techniques and methods of discipline. 1 1
3 Identify data preprocessing steps for data warehouse concept. 4͵7 1
4 Plan proper sollution to the problems and define data mining algorithms. 1 1͵2
5 Apply association rules. 1 1͵2
6 Analyse desicion trees and classification techniques. 1 2͵3
7 Distinguish clustering methods. 1͵7 3
8 Plan a sample warehouse with a real world data and analyse this data with all data mining algorithms. 1͵7 3

Not: Ölçme ve Değerlendirme sütununda belirtilen sayılar, bir üstte bulunan Ölçme ve Değerlerndirme Sistemi başlıklı tabloda belirtilen çalışmaları işaret etmektedir.

İş Yükü Detayları

# Etkinlik Adet Süre (Saat) İş Yükü
0 Course Duration 14 3 42
1 Course Duration Except Class (Preliminary Study, Enhancement) 14 2 28
2 Presentation and Seminar Preparation 0 0 0
3 Web Research, Library and Archival Work 0 0 0
4 Document/Information Listing 0 0 0
5 Workshop 0 0 0
6 Preparation for Midterm Exam 1 25 25
7 Midterm Exam 1 1 1
8 Quiz 0 0 0
9 Homework 0 0 0
10 Midterm Project 1 0 0
11 Midterm Exercise 0 0 0
12 Final Project 1 7 7
13 Final Exercise 0 0 0
14 Preparation for Final Exam 1 25 25
15 Final Exam 1 1 1
129